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METHODS OF INVESTIGATING THE SOLVABILITY OF"
SYSTEMS OF LINEAR EQUATIONS OF THERMOANEMOMETRY

M. Hoffmeister and G. Seifert UDC 532.57

Use of thermoanemometry for the investigation of turbulent flows often leads to systems of lin-
ear equations that are difficult to solve. A numerical method of solution, in which measurement
errors are taken into account approximately, is proposed for the investigation of solvability of
such systems of equations.

As we know, the heat emission from a heated filament to its surrounding medium depends on the modulus
~ and direction of the vector of the velocity relative to the filament, as well as on the temperature of the fila-
ment and the medium. For sufficiently small velocities of the flow it depends on the orientation of the filament
in the field of the force of gravity and to a small degree on the construction of the probe and the static pressure
of the medium (see, for example, [1-4]). The value of the electric voltage at the output of the thermoanemom-
eter characterizes the heat exchange of the filament and therefore, as a rule, is a function of several param-
eters corresponding to the cases mentioned above. When carrying out and processing measurements we first
and foremost pursue the objective by means of different methods of measurement — for example, using multi-
filament transducers or successively carrying out measurements with different positions of the filament in a
stationary flow —~ to obtain a system of equations which is solvable relative to the individual parameters of

flow that are of interest to us.

The present work contains analytical investigations on the basis of the so-called cosine law [1] and in-
vestigations by the least squares method [5-8] of the matrices of systems of linear equations of thermoanemom-
etry, Separate consideration is given to the methods of measuring with a single—filament transducer to deter-
mine the average velocity vector and Reynolds stresses in stationary turbulent flows which in the general case
are three-dimensional. It is assumed that the fluid is Newtonian, isothermal, homogeneous, and incompres-
sible. The basic propositions of these investigations are presented in [9-12] and will be repeated here to the
extent which is necessary for the understanding of the present work.

1. Application of the ""Cosine Law?"

A quadratic approximation of the three-dimensional calibration characteristic of the probe according to
[11] leads to the following relation between the single-point moments of the velocity field and the output voltage
of the thermoanemometer:

- w, L. ww; L
(@B 520) B% by S =8 =120 )
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(a a;+ 4a; by, = 4 bu by 5 bbby —a—

WWw . . DWW
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LU w
M ——(2a by, + 4b,; by,
e

Summation is carried out with respect to the repeated indices.

The linear and quadratic sensitivity coefficients aj and Bij are functions of &y' This angle can be varied
in succession (see Fig. 1) by rotating the probe about its axis. The corresponding sequence of measurements

AF and F' forms a system of equations with the parameter ay. The solution of this nonlinear system can be
reduced by an iterative method to the solution of a linear system of equations, where in the first iterations we
shall neglect the nonlinear terms within parentheses in the system of equations (1), (2). The solvability of sys-
tems of linear equations obtained in this way is subsequently to be investigated.

For the case of a transducer with an inclined filament, with the condition that the heat emission of the
filament depends only on the velocity component perpendicular to the filament (see [9]), we obtain

B(a’g - 2‘” (4o (By) + A (By) cos oy -+ A, (By) cos 2] 2, @)

where
A, (ﬁy) = % cos? B_V {3 cos 2y + 1) - sin?y;
A4,(,) = _% sin 2psin 2B, @)
4, (Ey = — % sinz\e(:o;2 ﬁy.
Using the relations for linear sensitivity coefficients given in [12], and omitting for the sake of simplicity the

notation (~) for the point of expansion {with the exception of the example at the end of the paper), from (3) and
(4) we obtain

a, = % L[B(“Y’ By) ] " { A, +———csoc + A, cos2av1,
2
Tn

2 o8, aﬁy 8!
a, = BZ,;” % [iﬁﬂ‘l {24, + 2A, cos o, +~ 24, cos 2a.}, (5)
. 2
. =
ay, = Bi_w n_ [ By By { A sine, + 24, sinQaY}.
B 2 B,. cos B Y cos B,
The expression
n B, [BlgB) 177 XY
by = : : VB B cos o) (6)
B w k=0 -
T =C=dp, |
23\ Y5 Y ' 4
\ -z,
\ 7
M ~— —_— (. y/
Y
" Z
Py>0-

Fig. 1, Diagram of a single-filament transducer, The
heated filament lies in the Yi¥e plane; the z, axis lies
in the y,y, plane. |71 =¢ =W,.
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is given only to explain the structure of the quadratic sensitivity coefficients. The coefficients entering into
this expression have the form

2 | S 04, \?
§VB) = A3 A+ A3 4P| 2 )
By " (By) = Ao+ 5 A + g A + 3B,

1 if_‘_x.)Q _1_'_6&2_)2] 1 A 1 L 4, 04
o (wn) 2 G e W A o

and they depend not only on the functions A j( /3y) Ay (By), and Az(ﬁy) and their first and second derivatives
with respect to By, but also on the modulus of the velocity c:

(g”_EL) B (ay; By)

p____,ln(_n__l)__ﬂ_ Eq B

2 \ 2 8 H_(cB)ﬂ{;_ﬁi
Ej B

®)

Neglecting the terms with quadratic sensitivity coefficients in Eqs. (1) and (2), we first consider the
case of linear approximation of the calibration characteristic of the transducer. Symmetry of the coefficients
i relative to ay allows us to separate the systems obtained from (1) and (2) (see [10, 11]), which leads to the
necessity of investigating the properties of the following four matrices:

Gor = (@, a3}, (92)
Gy = {;3}7 (9b)
- - > —_—
Grr = {a3, ai, a, 2a,a,}. (9c)

—>  —>
Grir = {2a,a, 2a,a,}. (9d)

It is obvious that the expressions in front of the curly brackets in Eq. (5) have no effect on the relation between
the column vectors of the matrices (9). The column vectors of interest to us are in essence a linear combina -~
tion of "trigonometric” vectors. In the case of the matrix (9¢) they have, for example, the form cos (mc,)
form=0,1, 2, 3, 4. It can be shown that these five trigonometric vectors (we shall call them base vectors)
are linearly independent, with certain simple exceptions. For example, for a transducer with inclined fila-
ment we find that for 0 < y < n/2and y = 7/2 < gy < /2 (By = 0) the number of base vectors serving for
the formation of column vectors is greater than the number of columns. Hence, it follows that linear depen-
dence exists only under certain conditions which must be satisfied by the coefficients of the base vectors.
Subsequently, we consider cases in which the number of base vectors in the matrices under consideration is
fess than the number of column vectors, i.e., cases where linear dependence exists. Thus, for the case of a
normal transducer for y= 7/2 and —n/2 < By < /2 (By # 0) the column vectors of the matrix (9¢) are made
up only of the three base vectors 1, cos 2ay, cos 4ay. Linear dependence must exist for four columns made
up of these three base vectors. Similar arguments can be developed for the remaining three matrices (9) and
for the other angles -y and By -

The matrices obtainable in the case of quadratic approximation of the calibration characteristic of the
transducers from Eqgs. (1) and (2), when we neglect the nonlinearities and use the symmetry condition of the
sensitivity coefficients, will not be investigated here in detail (see [11]).

Important is the fact that under the assumption

B B (ay; By)

=f—]—n -
< 2E? B

~ const (0)

the corresponding linear and quadratic sensitivity coefficients become approximately proportional to one an-
other: ay ~ bzz, ay ~ b12 ay ~ b23 For the commonly adopted conditions of the investigations

B B(ay; By)
—1; 05< 2% Py
(Bw ~ B

E2
S 08 n=05 ox 12 Sec)
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we obtain
- 0.618—0.021 < Q < — 0.618 + 0.021,

which means that the greatest relative deviation of this function from its mean value reaches 3.5%._

The presence of these approximate proportionalities between the linear and quadratic sensitivity coef-
ficients is confirmed by calculations, and this leads to unfavorable conditioning properties of the matrices
obtained from (1).

Analogously to @, for the expression P from Eq. (8) we have
—0.405—0.005 < P < — 0.405--0.005,
i.e., it is approximately a constant quantity. In the case of quadratic approximation of the calibration char-
acteristics of the transducers, the column vectors of the matrices on the basis of (6) and (7) can be reduced
to a linear combination of base vectors. On the whole, the method of comparing the number of base vectors

with the number of columns points to rigid constraints on the solvability conditions of the systems of equations
obtained from (2).

2, Application of the Least Squares Method

In the first part it was shown that in the solution of the (overdetermined) systems of linear equations
which result when the method of measurement presented above is used, in certain cases difficulties arise,
since the column vectors of the coefficient matrices can be linearly dependent. Thoughtless application of the
least squares method can then lead to physically meaningless results. Therefore, below we present a simple
numerical method of checking linear independence of column vectors; in other words, we establish the solv-
ability of systems of linear equations, The objective of applymg the numerlcal method consists of the follow-
ing: in the case of linear dependence of the column vectors si, s2, ey sn we find one of the bases {sll,

Sigy -+ - « slk} k<nls=sig,i,... 1k = n) of the linear space R' R' <= R™) formed by the column vectors

—_— -

S{, S9, . - . Sn [13]. For each vector s l=i= n, i=ig,1,...,Iig) we calculate its coordinates c (1 =
v = k) to this base:

k
5 = E 77 S - a1)
v=1
We next determine whether the system of equations

Zzi X; :;,,_3_1 (12)
i=1 .

is solvable and in the affirmative case find all solutions. The solutions of the system (12) found hy the least
squares method below will be called "generalized solutions.” For the application of this method to thermo-
anemometry it is particularly important to take into account, although approximately, the influence of random
errors of measurement of the vectors s; @ =i =n + 1), We show how this can be done. To begin we assume
that si; are found exactly. Then the numerical method consists of successive solution of problems in a form
that is close to the one under consideration, for example, in [13]:

1) to begin M = @, h = 1. We choose the index i; (1 <i; < n);

2) is added to M;

Siy,
3) foreachi I <i=n+1;1i#=1i,I... iy we determine the coefficients cj
that for the vector

)

(1 =y =h) in such a way

Y=

: \ (13)

the quantity

QM = (5, — @—E[ éw%J 14)

i=t

is a minimum;
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4) only two cases are possible:
4a) h = n:_é.i,—s—z, . ,En are linearly iﬁdependent, the computatioh process is terminated;
4b) h < n, two cases exist: |
4ba) for alli, whenl =i=n, i =i, i,..., i,
Q" =0 @s)

holds, and R' has the dimension k =h. Vectors from M form one of the bases of the space R!. The coefficients
for the expression (11) have been found. The computation process is terminated;

4bb) dt leastonei A <si<sn;i= 11 iy,. . ., ip) exists for which
# >0, 16

5) ik is chosen from natural numbers p for which

QY = max Q" | an
i
Pl o iy
is valid, Then h is increased by one. The computation process is continued from the point 2), It can easily
be shown that k linearly independent vectors Sijs Siys - - + 5 Sig will be found if and only if R' has the dimen-~

sionality k.

3. Application to a System of Linear Equations

Tet{s;, 85, ... , Sk} (k =n) be one of the bases of the space R'. We denote

n

=4 X ar (1<i<h; : 18)
T ov=k+1
then (12) assumes the form
2 Sy 2, :—S.n;_l, (19)
v=1
where x4, X,, . . . , Xp Is the solution of the system (12) if and only if 2y, 25, . . . , 2g 1s the solution of the sys-

tem (19). Since the vectors sy, sy, . . . , Sk are linearly independent, the system (19) has a unique solution if
and only if Qr(ll‘fl_)i =0, If Qr(xl-{«-)i =0, then zj = cr(1]4)-1 ( =j = k) are this solution, and from

n
=g+ Y 5 (1<i<h @0
v=k+1 :

we can obtain all solutions xy, X9, . . . , Xp of the system (12). The quantities cr(lill (1 = j = k) thus found in this
case are the solution of the system (12) (for k = n) or they are the values of linear combinations of the unknowns
{for k < n). If Qt(lli)i > 0, then the system (19) has a "generalized" solution but no solution in the usual sense.
In this case (12) also in the usual sense is unsolvable. If we consider (12) as a problem of linear regression.
then Ct?ll in the case m > k can serve as estimates for Xy, X,. . . . , X, or as estimates of their linear combina-
tions (20) [6].

The knowledge of linear combinations is useful in many practical cases. For example, if we know the
definite limits between which xy44, XK+4s, . . . , Xp must be located, then from the expression (20) we can obtain
the limits for x;, %y, ..., Xk (see [11]).

In the application to thermoanemometry,sj; 1 =i =n, 1 =j = m) denote the sensitivity coefficients [see

1). ), 6), (6)]. They are obtained as the right side of Sn-H j [Af‘, F see (1), 2)] by means of a series of
successive measurements. The method is to be generalized with the aim of taking into account the random
errors of measurement, when answering the following question: does the expression (11) exist for'§i and is the
system (12) solvable or not solvable in the usual sense? For this we use certain rough approximations which
give a tentative estimate, which, however, is convenient to apply, for the solvability of the system (12) with
coefficients found with a certain accuracy. Below two somewhat differing variants are presented.

1. sij A=<i=s=n+l;1=j=m), stE.ictly speaking, are realizations of the random quantities ij, while
“8j are realizations of the random vectors ¢j. Frorm the analysis of the method of measurement in a majority of

542



cases we can obtain an estimate d(sij) for the accuracy of determining the quantity sij (see [14]). The first,
naturally rough assumption is provtded by E (oij) = sij and D(oij) = [6(51])] We put

m

D(oy) = — ‘)‘ 18 (si7)1% 1)

i !

JS

D@y = %
-7

I

The second assumption consists of the fact that GqJ' and Upj (1 =j =m) for p # q must be independent random

v)

quantities. For a linear combination (13) with nonrandom quantities ci ', according to (21), from the relation
for determining the error [5], [8] we can obtain the expression
h
DE) = ¥ @D @E,) — ), (et 2 18 s, I e2)

RSN

If we determine cl(V) in such a way that Q(h [see (14)] is a minimum, then according to (21), (22), and (14) for
eachi l=i=n+1;i=1i,1,...,1p we can compute the value

a =min()/ L am V5@, )L " —Vb@- 23)

We arrive at the definition: a vectorgl A=i=n+11=1i0,...,1 within the limits of measurement
accuracy can be represented by the linear combmatmn (13) of the vectors 511’ slz, ... S‘h if ua‘) = 0.

2. The second variant was considered in [14]. Here instead of the quantity ui(h), the value

= l/ - A T Yon @)

is computed, and then, just as ui(h) in the first variant, it is used for the corresponding definition.

An application of these variants requires the following changes in the method presented above: (15) must
be replaced by ui(h) =0or vi(h) = 0; in (16) and (17), Q" is substituted by ui(h) or Vi(h)'

A program in ALGOL was setup for the computations. The results of the calculations showed an insignifi-
cant difference between the two variants.

The system of equations (12) is considered "solvable within the limits of measurement accuracy" in the
case of ur(lk)1 =0or vnT) = 0, where k, determinable by the modified method, is the "dimensionality " of the
space R'. The coefficients cnli, (2)1 C,+y are considered by us for the given measurement accuracy as
possible values for the unknowns xq, X,, . . . , Xp or their linear combinations (20). If the system of equations
(12) is "not solvable within the limits of measurement accuracy," then it is assumed that thisis due to the short-
comings of the theoretical model serving as our basis (for example, the linear approximation of the calibration
characteristic). Then we can attempt to obtain the solution by means of the approved model (for example, a
quadratic approximation of the calibration characteristic),

Example. The matrix (9¢), when measuring with a normal transducer (y=17/2; ,éy =17.9[°, &y =0, 15,
30, 45, 60[°]), has the form
0.006 x, --0.293 x, — 0.085 x, = 0.00820,
0.004 x; +0.283 x, + 0.017 x, — 0.070 x, = 001023
0.002 x, +0.258 x, -+ 0.064 x,—0.039 x, = 0.01618, (25)
0.219 x, +0.140 x, -+ 0.005 x, = 0.02494,
0.011 x, -+ 0.171 x,+ 0.246 x, -+ 0.086 x, = 0.03188.
Here é(su) = 0. 012 forl=i<4,1 <] = 5; 6(s4J) =0.00032 1 <] =< 5). For ij = 2 with this method we obtain

h=1)3{=0.0175, V1()‘“0 007; ) = —0.127%), vi) = 0.052, 81 = 0.30375,, v) = 0.106; 5] = +0.066 5. v =
0.013,

In accordance with (17) we choose i, =3 (b = 2):

=0.010 5,4+ 0.022 %, o = — 0.008,
5= —0.289 5, 0536 3, v{ — — 0.010, (26)
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= 0.031 §,+ 0.113 5;, () = 0.0003.

The computation process is terminated. The result is k = 2;—5.1 and E4 within the limits of accuracy of measure-
ments are represented by the linear combinations (26) (since v1(2) =0, v4(2) = 0); the system of equations (25)

is "not solvable within the limits of measurement accuracy" (since vs(z) > 0). Ifv* =0, then in conformity
with the definitions given above, each quadruple %y, %3, X3, X4, elements of which possess the properties

%, +0.010 x,— 0.289 x, = 0.031, x, -+ 0.022 x, - 0.536 x, = 0.113,"

could be called "within the limits of measurement accuracy" a possible solution of the system (25).

NOTATION

yi. Cartesian coordinates referred to the transducer (i =1, 2, 3) (see Fig. 1); zj, Cartesian coordinates
referred to the flow (i =1, 2, 3) (see Fig. 1); wi, velocity components in the system zj (i =1, 2, 3); z, velocity
vector; ¢, modulus of velocity vector; o v By, angles of attack (see Fig. 1); v, angle of inclination of the fila-
ment (see Fig. 1); ¥, dimensionless output voltage of the anemometer; B(ay, fy). calibration function (see [12]);
B relative value of the function B(oz By) (see [12]); n, index in the King law (see [12]); Ez, calibration con-
stant in the King law (see [12]); By, callbratlon constant; aj, linear sensitivity coefficients (i =1, 2, 3); blj,
quadratic sensitivity coefficients (i,j =1, 2, 3); ¢), time-averaged value; ( )', pulsation component; (*), nota-
tion of quantities at the pomt of expansion of the approximation; A(~) = () — (*); (=), column vectors xi {1 =
i <n), unknowns (see [12]); s @ =i = n), column vectors of coefficient matrices (see 12]1); sn+1, vector of the
right side (see [12]);8 sjjl=i=n+1,1=j=m), j-th components of the vector sl, M, set of vectors; @,
empty set; E(g), mathematical expectatxon of a random quantity; D (o), variance of a random quantity.
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